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LETTER TO THE EDITOR

On the existence of extended electronic states in a loopless
fractal

Arunava Chakrabarti†
Department of Physics, Scottish Church College, 1 and 3, Urquhart Square, Calcutta 700 006,
India

Received 10 November 1995

Abstract. It has been shown analytically that a proper tuning of the boundary condition can
ensure an infinity of extended electronic eigenstates on a loopless semi-infinite Vicsek fractal.
First we map this particular loopless fractal exactly onto a one-dimensional hierarchical chain.
Within the framework of real space renormalization group and the transfer matrix methods we
then demonstrate how a suitable choice of the on-site potential of an edge atom can generate a
whole hierarchy of extended Bloch-like eigenfunctions.

The character of electronic eigenstates in one-dimensional lattices has always attracted the
attention of condensed matter theorists. The periodicity or randomness in the distribution
of on-site potentials on a chain of atoms is known to produce altogether different classes of
electronic states. In the periodic case, the eigenstates are the Bloch functions, while in the
presence of random disorder all the wavefunctions are localized in an exponential manner
[1]. At the same time, it has also been established that disorder, in a deterministic way, may
lead to the delocalization of electron wavefunctions, even in one dimension. The number of
such delocalized (extended/resonance) wavefunctions may range from one [2] (in the case
of a random dimer type model) to infinity [3] (in the case of a self-similar quasiperiodic
chain of atoms). Such systems therefore provide examples of 1D systems where minibands
of extended electronic states exist at special values of the electron energy in spite of the
absence of any long-range translational symmetry.

In this letter we deal with another class of systems that do not have any translational
order, namely fractals. We deal, in particular, with a loopless fractal lattice, called the
Vicsek fractal, and we show that a proper choice of an edge atom in a semi-infinite Vicsek
fractal can ensure the existence of aninfinite number of extended electronic eigenstates.
Our results are exact, and the method can be extended to other types of loopless fractal,
though the tuning of the boundary atom may not be an essential criterion in all other cases.

Previous works on fractals have mainly been centred around the Sierpinski gasket (SG),
which is a popular example of a fractal with loops. Electronic and harmonic excitations
on a SG have already been studied in some detail. The general character of such spectra
on this lattice turns out to be a Cantor set and the wavefunctions all localized for a gasket
of infinite generation [4, 5]. Very recently, in an interesting piece of work, Kappertz and
co-workers [6] studied the quantum dynamics of electrons on the non-branching Koch curve
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within the framework an exact real space renormalization scheme. A concise classification
of the quantum states in a Koch curve has been presented.

Apart from these works, another interesting loopless fractal that has started receiving
some attention in recent years is the well known Vicsek fractal [7–9]. Although a few studies
about the nature of harmonic excitations on a Vicsek fractal are available in the literature
[7–9], the electronic spectrum has practically remained unexamined. The only recent result,
to the best of our knowledge, has been a calculation of the average density of states using
a generating function approach [10], but this work does not shed any light on the nature of
electronic eigenstates. In what follows, we now prove in a completely analytical way that a
Vicsek fractal provides a very interesting example of a non-translationally invariant system,
where a proper tuning of the site energy of an edge atom triggers an infinite number of
Bloch-like electron eigenstates.

We describe the system by the usual tight-binding Hamiltonian for non-interacting
electrons:

H =
∑

n

εn|n〉〈n| +
∑
〈nm〉

tnm|n〉〈m| (1)

where εn is the on-site potential at thenth atomic site andtnm is the nearest-neighbour
hopping integral. For a semi-infinite fractal, we assign a site energyεL to the extreme
left atom. The other atoms at all the vertices have site energyε0. The nearest-neighbour
hopping integral is kept uniform everywhere. It is easy to see (figure 1) that the entire
fractal is built up by placing a basic five-site cluster side by side to form bigger clusters
in higher generations. We now transform the fractal into a one-dimensional chain of atoms
by decimating the upper and lower branches around a central site at any generation. This
transformation is illustrated in figure 1 for a second-generation fractal. The semi-infinite
effective 1D chain can now be easily constructed. It is interesting to find that the central
sites in the original fractal are transformed into sites in the 1D chain with site energiesεi ,
with i = 1, 2, 3, . . . distributed in a hierarchical way. Sequentially, the different values of
εi arise out of decimations of bigger and bigger upper and lower clusters of atoms around
the central sites at each scale of length. For example, the first such atom in the 1D chain
has a site energy equal toε1 = ε0 + 2t2/(E − ε0). The other site energies that create
the hierarchical pattern in the transformed 1D lattice can be obtained in a similar fashion
making use of the recursion relations provided in [9]. All other sites on the effective 1D
chain have their site energies equal toεL andε0 corresponding to the extreme left atom and
the other ‘undecimated’ atoms respectively.

We can now study the nature of electron states in this effective 1D chain in order to gain
insight into the spectral character of the original Vicsek fractal. It is important to appreciate
that the transformed chain and the parent fractal will support extended states, if there are
any, at the same energy eigenvalues. We precisely adopt this line of attack, and show how
a proper choice of the edge atom can lead to an infinity of extended electron states in the
semi-infinite Vicsek fractal.

To prove the existence of such extended states at specified values of the energy, we
need to solve the set of difference equations

(E − εn)ψn = tψn+1 + tψn−1 (2)

whereψn is the amplitude of the wavefunction on thenth atomic site and we have set the
nearest-neighbour hopping integrals to be identical, and equal tot . It is easy to recast this
equation in a matrix form(

ψn+1
ψn

)
=

(
(E − εn)/t −1
1 0

) (
ψn

ψn−1

)
. (3)
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Figure 1. (a) A Vicsek fractal at its second generation. The sites that will be decimated are
enclosed in ‘dotted’ boxes. (b) The transformed 1D chain. The edge site is marked with an
open circle. Other sites are indicated by the solid circles, the square and the triangle.

The transfer matrix relating the amplitudes on the(n + 1)th andnth site to those of the
nth and(n − 1)th site is a 2× 2 unimodular matrix. Denoting such a matrix corresponding
to the site with site energyεi by Mi and counting the sites from the left end, we observe
that the amplitudes on the sixth and the fifth sites of the effective 1D chain can be written
in terms of those of the third and the second sites as(

ψ6
ψ5

)
= M2M0M0

(
ψ3
ψ2

)
. (4)

Noting the simple form of the individual transfer matrices it is possible to rewrite the
above equation in the form [11](

ψ6
ψ5

)
= (I + λ2I0)M

3
0

(
ψ3
ψ2

)
. (5)

In the above equationI is the identity matrix,I0 = (σx + iσy)/2, andλ2 = (ε2 − ε0)/t . σx

andσy are the usual Pauli matrices.
Now, M0 being a 2×2 unimodular matrix, we can write [12]M3

0 = U2(x)M0−U1(x)I ,
whereUn(x) is thenth-order Chebyshev polynomial of the second kind, andx = Tr(M0)/2.
We now make an important observation. It can be easily checked that, ifU2(x) becomes
equal tozero for some value of energy, this choice automatically fixesU1(x) equal to±1.
SinceU1(x) = (E −ε0)/t , we have a special energyE = ε0 ± t that simultaneously ensures
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U2(x) = 0 andU1(x) = ±1. At this special energy the matrixM3
0 simply becomes equal

to −I .
Let us now consider the caseE = ε0 + t , and look at the amplitudes of the electron

wavefunction at different sites on the chain at this specific value of the electron energy. For
E = ε0 − t we can proceed in a similar way. Using equation (5) and the above conditions
simultaneously, we see that the wavefunction amplitudes at the sixth and fifth atomic sites
from the left are given byψ6 = −ψ3 − λ2ψ2 and ψ5 = −ψ2 respectively. It is then easy
to calculate the remaining amplitudes up to infinite distance in terms of the amplitudes at
the second and the third sites. It is interesting to observe that hierarchy in on-site terms is
introduced at sites with index(3n+2), n = 0, 1, 2, . . . from the left, and that the amplitudes
at each of these sites are always equal to±ψ2. Amplitudes on the sites other than these
become a linear combination ofψ3 andψ2; more specifically, each of them are of the form
±[ψ3 + (

∑
n cnεn)ψ2], wherecn are integers. Now, if an eigenstate is of an extended type,

then it has to be non-vanishing even at infinite distance away from the first site (extreme
left), and at the same time it has to remain finite throughout the lattice. The finiteness of
amplitudes at sites other than the 3n + 2, n = 1, 2, . . .), sites depends on the growth of the
factor

∑
n cnεn and it is nota priori possible to estimate whether it always remains finite

at the desired energyE = ε0 + t . On the other hand, ifψ2 can be made to vanish at this
energy, thenψ3n+2 is always equal to zero for any integral value ofn. At the same time it
automatically ensures that the amplitudes on the remaining sites will be equal to±ψ3. To
understand this we consider the first few in the hierarchy of equations(2), namely

(E − εL)ψ1 = tψ2 (6)

(E − ε1)ψ2 = tψ1 + tψ3 (7)

(E − ε0)ψ3 = tψ2 + tψ4 (8)

and so on. We now observe that, since expressing an amplitude on any arbitrary site in
terms of sites 2 and 3 does not demand any specic value ofεL, its choice remains free. We
therefore choose the site energy of this edge atom to be equal toεL = E = ε0 + t . From
(6) it becomes obvious that this choice ofεL makesψ2 equal to zero, and, consequently,
each subsequentψ3n+2(n = 1, 2, 3, . . .) = 0. The electron thus feels an effective ‘periodic’
arrangement of identical atoms with site energyε0 (except the one on the extreme left).
Settingψ1 equal to unity, we can easily obtain the amplitude at the third siteψ3 = −1, and
at all other sites to be equal to±1. The wavefunction profile that spans the 1D hierarchical
system in this case is typically of the form 1, 0, −1, −1, 0, 1 for the first six sites, and this
pattern is repeated periodically up to infinite distance for the particular energyE = ε0 + t .
This is a Bloch-like extended eigenfunction for the Vicsek fractal and the above energyE

is definitely an eigenvalue.
The problem now is to find out whether there are other energy eigenvalues for which

the fractal sustains extended states. For this, we consider a renormalized version of the 1D
hierarchical chain. We can do this by decimating the sites with site energyε0 andεL. The
recursion relations for the first three sites are given by

ε′
L = ε1 + t2[1/(E − εL) + 1/P ] (9)

ε′
0 = ε1 + 2t2/P (10)

t ′ = t3/[P(E − ε0)] (11)

ε′
1 = ε2 + 2t2/P (12)

whereP = (E − ε0) − t2/(E − ε0). Similar relations can be obtained for the other on-
site terms also. Renaming the surviving sites we find the lattice to have exactly the same
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hierarchical distribution of modified on-site potentials as in the original lattice. Therefore,
using the same set of arguments we find that the values of energy at whichψ3n+2 = ±ψ2
for n = 1, 2, . . . on the renormalized lattice are obtained by settingE = ε′

0 + t ′. Hence, if
ψ2 on this renormalized lattice becomes zero at the above energies, then the wavefunction
at all 3n + 2 sites on that length scale will vanish. But, we have to be alert to the fact that
in order to makeψ2 = 0 on the renormalized lattice we must haveE = ε′

L at those specific
energies. Now, the value ofεL in the original chain has already been fixed to beε0 + t . So,
the possibility of havingψ2 = 0 on the renormalized lattice depends entirely on whether
we can still achieve the equalityE = ε′

L with the pre-determined value of the edge site
energy. Exploring this aspect we find that it is quite simple to prove that, if we have the
equalityεL(n) = ε0(n) + t (n) at anynth stage of renormalization, then this equality holds
for all subsequent iterations. That is to say, a ‘proper’ choice of the edge site energy at
the very first stage (in the original lattice) ensures the existence of extended electron states
at all subsequent length scales. The energy values corresponding to these extended states
are obtained by solving the polynomial equationE = ε0(n) + t (n) at thenth stage. It then
becomes straightforward to trace back and calculate the amplitudes on the original fractal
lattice. The wavefunction is now found to have longer periods with increasingn. However,
it should be appreciated that all the energies obtained this way may not be the ‘allowed’
ones. The allowed energies will be those for whichεi , i = 1, 2, 3, . . ., will remain finite.
For example, settingε0 = 0 andt = 1, we findE = 1 at the beginning. At this energy the
amplitudes on each site on all the upper and lower side branches are zero. The propagating
electron will not feel the presence of the dangling edges of the fractal at this energy. On
scaling, we obtainE = −2, −0.801 938, 0.554 958 and 2.246 98 from the first iteration.
In this case we have to check only the finiteness ofε1. It remains finite at each of these
energy values. Therefore these energies are allowed. The amplitudes now start developing
non-zero values at some of the sites with co-ordination number four as well as at the side
branches attached to these sites. The number of non-zero amplitudes will increase with the
progress of renormalization. Carrying on this process we will be able to generate the full
spectrum of extended eigenstates.

In conclusion, we have shown the existence of Bloch-like states on a fractal lattice.
The method can be applied to other loopless fractals exploiting their self-similarity and the
possibility of a disorder induced insulator–metal transition can be investigated. A complete
analysis of the eigenstates and a study of electrical conductance on such systems will be
reported elsewhere.

The author is grateful to B Bhattacharya, S Sil and R K Moitra for stimulating discussions
and fruitful suggestions. The working facilities at the Saha Institute of Nuclear Physics,
Calcutta are gratefully acknowledged.
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